Skip to Content

Description

The handling and analysis of data generated by proteomics investigations represent a challenge for computer scientists, biostatisticians, and biologists to develop tools for storing, retrieving, visualizing, and analyzing genomic data. Informatics in Proteomics examines the ongoing advances in the application of bioinformatics to proteomics research and analysis.

Through computer simulations, scientists can determine more about how diseases affect cells, predict how various drug interventions would work, and ultimately use proteins as therapeutic targets. This book first addresses the infrastructure needed for public protein databases. It discusses information management systems and user interfaces for storage, retrieval, and visualization of the data as well as issues surrounding data standardization and integration of protein sequences recorded in the last two decades. The authors subsequently examine the application of statistical and bioinformatic tools to data analysis, data presentation, and data mining. They discuss the implementation of algorithms, statistical methods, and computer applications that facilitate pattern recognition and biomarker discovery by integrating data from multiple sources.

This book offers a well-rounded resource of informatic approaches to data storage, retrieval, and protein analysis as well as application-specific bioinformatic tools that can be used in disease detection, diagnosis, and treatment. Informatics in Proteomics captures the current state-of-the-art and provides a valuable foundation for future directions.

Reviews

"Dr. Srivastava has gotten many of the advanced researchers in the field to contribute articles that truly define the state of the are as it exists today."

-Books-On-Line

Contents

The Promise of Proteomics: Biology, Applications, and Challenges; P.D. Wagner and S. Srivastava

Proteomics Technologies; S. Srivastava and M. Verma

Creating a National Virtual Knowledge Environment for Proteomics and Information Management; D. Crichton, H. Kincaid, S. Kelly, S. Srivastava, J. S. Hughes, and D. Johnsey

Public Protein Databases and Interfaces; J. Meejung and C. Oh

Proteomics Knowledge Databases: Facilitating Collaboration and Interaction between Academia, Industry, and Federal Agencies; D.B. Warzel, M. Winget, C. Edelstein, C. Lin, and M. Thornquist

Proteome Knowledge Bases in the Context of Cancer; D. Medjahed and P.A. Lemkin

Data Standards in Proteomics: Promises and Challenges; V. Ravichandran, R.D. Sriram, G.L. Gilliland, and S. Srivastava

Data Standardization and Integration in Collaborative Proteomics Studies; M. Adamski, D.J. States, and G.S. Omenn

Informatics Tools for Functional Pathway Analysis Using Genomics and Proteomics; C. Creighton and S.M Hanash

Data Mining in Proteomics; R. Gangal

Protein Expression Analysis; G. Chen and D.G. Beer

Nonparametric, Distance-Based, Supervised Protein Array Analysis; M.-F. Yeh, J. Kowalski, N. White, and Z. Zhang

Protein Identification by Searching Collection of Sequences with Mass Spectrometric Data; D. Fenyö, J. Eriksson, and R.C. Beavis

Bioinformatics Tools for Differential Analysis of Proteomic Expression Profiling Data from Clinical Samples; Z. Zhang

Sample Characterization Using Large Data Sets; B.T. Luke

Computational Tools for Tandem Mass Spectrometry-Based High-Throughput Quantitative Proteomics; Jimmy K. Eng, Andrew Keller, X. Li, A. Nesvizhskii, and R. Aebersold

Pattern Recognition Algorithms and Disease Biomarkers; B.A. Hitt, E. Petricoin, and L. Liotta

Statistical Design and Analytical Strategies for Discovery of Disease-Specific Protein Patterns; Z. Feng, Y. Yasui, D. McLerran, B.-L. Adam, and J. Semmes

Image Analysis in Proteomics; S. Lockett

Index

Name: Informatics In Proteomics (Hardback)CRC Press 
Description: Edited by Sudhir SrivastavaContributors: Ben Hitt, Daniel Crichton, Denise B. Warzel, Rajeev Gangal, David Fenyo, Zhen Zhang, Djamel Medjahed, Brian Luke, Steven Locket, Jane Oh, Marcin Adamski, Ziding Feng, Marcy Winget, Ruedi Aebersold, David Beer, Samuel Hanash, Gary Gillialand, Jeanne Kowalski, Yutaka Yasui, O. John Semmes, Bao-Ling Adam, R.C. Beavis, Guoan Chen, Chad Creighton, Cim Edelstein, Jimmy K. Eng, J. Eriksson, J. Steven Hughes, Donald Johnsey, Andrew Keller, Sean Kelly, Heather Kincaid, Peter A. Lemkin, Xiao-jun Li, Chenwei Lin, Lance Liotta, Dale McLerran, Alexey I. Nesvizhskii, Gilbert S. Omenn, Emanuel Petricoin, Veerasamy Ravichandran, Ram D. Sriram, David J. States, Mark Thornquist, Mukesh Verma, Paul D. Wagner, Nicole White, Mei-Fen Yeh. The handling and analysis of data generated by proteomics investigations represent a challenge for computer scientists, biostatisticians, and biologists to develop tools for storing, retrieving, visualizing, and analyzing genomic data. Informatics in...
Categories: Bioinformatics, Genetics, Drug Discovery